
Formal Requirement Enforcement on Smart
Contracts based on Linear Dynamic Logic

Naoto Sato Takaaki Tateishi
IBM Research

Shunichi Amano

Abstract—Recently, despite the growing popularity of smart
contracts, one serious concern is arising among both industry
and academia, that is, whether they work autonomously without
human intervention really as intended and, when we are not sure,
how we can ensure that contracts meet particular requirements.
To resolve this, we propose a new formal approach to smart
contract development: instead of defining contracts just as
programs in conventional languages, they should be defined
using formal logic so that we can verify whether they meet
particular requirements and enforce them if necessary. The
primary challenge is that expressive formal logic often turns
out to be undecidable and consequently executable programs
cannot be generated. As a solution, each contract definition
is divided into two layers, namely specification layer in a
decidable logic called Linear Dynamic Logic for verification
and enforcement of requirements and rule layer for defining
implementation details, while the consistency between the two
layers is systematically guaranteed. Based on this, it also becomes
possible to automatically generate executable contract programs
from their formal specification, which leads to improving the
trustworthiness of contracts. Evaluation on Hyperledger Fabric
shows the feasibility and high effectiveness of our approach.

I. INTRODUCTION

Today, we are witnessing a growing popularity of smart con-
tracts, which are, in essence, autonomous computer programs
whose operations are mapped to blockchain transactions. In
recent years, there emerge new programming languages, de-
signed to build executable smart contracts, such as Solidity [1],
Kotlin (API for Corda) [2], and Script [3]. Unfortunately,
although smart contracts in these languages work in a highly
autonomous manner without human intervention, they are
often error-prone, that is, it is very difficult to ensure that
they work as intended due to their high expressiveness and
complexity. Consequences of unexpected errors could be seri-
ous because they often involve financial transactions, as were
revealed through recent disturbing incidents such as the DAO
attack.

To resolve this and avoid such errors, we aim to develop a
new technology for enforcing requirements on smart contracts
by formal and automatic means: Given a smart contract c
and its requirements, commonly defined using formal logic,
it should be possible to automatically generate another smart
contract c′ that is similar to c but is more restricted so that
it meets the requirements. Further, based on this technology,
we also aim for automatic generation of smart contracts from
formal specification of their requirements. Thus, by combining
these, the entire process of contract generation will be based on

solid formal grounds: Starting from a formal specification of a
contract, an executable contract is automatically generated, on
which extra requirements can be further enforced arbitrarily.

The primary challenge in attaining these goals is that there
exists a trade-off between the expressiveness of underlying
formalism and the feasibility of automation: If we employ
an expressive formal language for contract definition, it is
often the case that executable contract programs cannot be
automatically generated. This is since automatic requirement
enforcement and contract generation involves satisfiability
solving in underlying formal logic, which could be decidable
or undecidable, and higher expressiveness leads the logic to
turning into being undecidable. Consequently, for automation,
the expressiveness of specification needs to be restricted
substantially. This could end up with severe compromises.

As a solution, we introduce what we call 2-layered compos-
able contracts. First, each contract definition is divided into
two layers, namely specification layer in a formal language
based on a decidable logic called LDLf [4] and rule layer in
both LDLf and a programming language such as JavaScript.
The former specifies the transaction protocol and logical
properties of a contract whereas the latter defines implemen-
tation details of the transactions. As a key characteristic, the
two layers need not be related directly but can be defined
separately and then combined together. Regardless of how
the 2 layers of a contract are defined, the contract as an
executable program always meets what are defined in its
specification layer as long as the definition is consistent (as a
LDLf formula), that is, invalid combinations lead to logical
inconsistency and derive no contract program. Exploiting this
characteristic, given a contract, we can combine separately-
defined extra requirements into the specification layer of the
contract (requirement enforcement).

Secondly, composition operations are newly provided for
both contract specifications and full-fledged contracts. If con-
tracts have consistent specifications, composition of them
preserves consistency. In another term, contract consistency
is closed under composition. Based on this, we have devel-
oped an algorithm for automatic contract generation: given
a contract specification and a set of contracts as building
blocks, a new contract that conforms to the specification can be
composed of the building block contracts by only referring to
their specification layers (automatic contract generation). Note
that all operations within specification layers, including both
enforcement and composition, make no negative impact on the

feasibility of automation, which is the key of our solution.
As an example of automatic contract generation, let us

consider the following ‘toggle switch’ contract. Suppose we
have two small contracts that respond to a single ‘toggle’
event – one turns on a switch and the other turns it off,
and they also change the internal switch state to ‘_on’ and
‘_off’, respectively. Then, suppose further that we want a
new contract that responds to an even number of consecutive
toggle events and alternate the switch state accordingly. The
2 contracts and the above specification of the target contract
are defined in our DSL (Sec IV) as follows.

[2 building-block contracts]

protocol toggle ;; // single ’toggle’ transaction event
rule on toggle do ensure _on { turn_on (); }; // ECA rule w. JS

protocol toggle ;;
rule on toggle do ensure _off { turn_off (); };

[Specification of the target contract]

protocol (toggle; toggle)∗ ;; // even number of ’toggle’ events
property // LDL formulas
<(_off; _on)∗> last; // alternation of the ’_off’ and ’_on’ states
[true∗] !(_on & _off); // ’_on’ or ’_off’ holds exclusively

Assuming these as inputs, our algorithm automatically gener-
ates the following contract by combining the building-block
contracts, only using composition operators, and enforcing the
properties defined in the specification. Note A1 and A2 are
fresh atomic propositions introduced for keeping consistency.

protocol (toggle; toggle)∗ ;;
property
<(!_on & _off & A1 & !A2; !_off & _on & !A1 & A2)∗> last;

rule
on toggle when A1 & !A2 do ensure _on { turn_on (); };
on toggle when !A1 & A2 do ensure _off { turn_off (); };

It is guaranteed that the generated contract is consistent and
meets the specification. The contract is then translated into a
single LDLf formula, which, together with the JavaScript code
fragments attached to the rule actions, derives a final contract
program that is executable on a blockchain platform.

Our contributions and their novelties are summarized as
follows. (1) Contract formulation: Each smart contract is
defined as a tuple of protocol, properties, and rules, the
first two of which constitute the specification layer of the
contract whereas the third constitutes the rule layer. Most
notably, these are formulated in a modular manner based on
the separation-of-concern principle, that is, the protocol (event-
based) and the properties (state-based) of a contract can be
defined separately and so can the 2 layers. This modularity
leads us to providing a simple and clear formal semantics for
contracts based on LDLf . (2) Requirement enforcement: As a
direct consequence of the separation, it turns out requirements
can be enforced on a contract straightforwardly by simply
adding them to its specification layer. (3) Composition: We
have introduced a set of contract composition operations which
preserve contract consistency (closure property), that is, given
consistent contracts c1 and c2, composite contracts such as

c1; c2 and c1+c2 are consistent as well. This allows us to focus
on the specification layers of contracts upon composition.
(4) Automatic contract generation: We have developed an
algorithm to automatically generate a contract that meets a
particular specification by combining existing contracts. (5)
DSL: For demonstrating the effectiveness of our approach, we
have developed a DSL and a set of tools that feature the above
functionalities. Contracts defined in the DSL can be translated
into contract programs (chaincodes) that are executable on
Hyperledger Fabric (HLF).

The rest of the paper is organized as follows. The follow-
ing section briefly surveys related work and exhibits their
problems. Sec III summarizes how smart contracts work on
blockchain platforms. Sec IV introduces a small DSL to
explain and illustrate our approach clearly. Sec V proposes
our solution for formal require enforcement and contract
composition. Sec VI describes implementation details and
show some results of evaluation. Sec VII summarizes our work
and mentions to some future research directions.

II. RELATED WORK

While the idea is widespread, the term “smart contract”
has no clear definition. Stark pointed out that there are two
different notions that ‘smart contract’ means [5]. One is
smart contract code, which is a piece of code written in a
programming language that runs on a blockchain platform.
The other is smart legal contracts. They are more than just
codes, but are supposed to complement or replace existing
legal contracts and to be legally enforceable as such. Taking
this into account, we briefly survey existing efforts related to
smart contract development.

A. Programming Languages for Smart Contracts

Major blockchain platforms provide tools for smart contract
development, which include compilers of contract program-
ming languages. Bitcoin supports a Forth-like stack-based lan-
guage without loops, called Script [3]. It is Turing-incomplete
and used mostly for digital signature verification. Ethereum
was originally conceived to improve Bitcoin with a full-
fledged programming language for application development.
In addition to Solidity [1], it supports LLL, Serpent, and
Mutan. They all run on Ethereum Virtual Machine (EVM).
Corda is developed mainly for financial applications (at least
for the start), and its design choice is relatively conservative. It
supports Java, and also Kotlin [2], another JVM language of-
ficially supported in Android OS. What differentiates Corda’s
smart contracts from others is that they can have legal proses
attached to smart contract code so that one can refer to
them in case of disputes. Hyperledger Fabric [6] supports
smart contracts written in Go language, called chaincodes.
Chaincodes are mostly similar to Ethereum smart contracts,
except that they depend on Docker instead of virtual machine.

From third parties other than blockchain platform providers,
several new cross-platfom languages have been proposed.
Among those, Simplicity [7] is a strongly-typed combinator-
based low-level language that features analysis of resource

usage on virtual machines including its own Bit Machine.
Primarily owing to its Turing-incompleteness, temporal and
spatial boundaries of resource use can be estimated by static
means. Ergo [8] is another strongly-typed functional language
that has a platform-independent semantics. Similar to Simplic-
ity, it also imposes a restriction on iterations and guarantees
termination of contract execution.

B. Formal Logic-based Approaches
One important feature that we believe contract programming

languages should support is verification of properties that
hold against particular contracts. Solidity∗ is designed to be a
dialect of Solidity [9]. Contracts in Solidity∗ are translated into
F∗ which is a ML-based language and allows to certify proper-
ties of programs using automatic and semi-automatic provers.
[10] introduces a DSL for defining financial contracts such
as FX future, swap, option and other derivative contracts in a
similar manner to [11]. In the DSL, each contract is defined
as a cash-flow between parties that depend on stochastically-
fluctuating values, like FX rates, called observables and can
be composed of simpler contracts. It also has a type system
that helps infer properties, such as causality, of contracts.
Although contracts in this DSL are not designed to run on
blockchain platforms, it primarily addresses automation of
financial transactions in the same sense as manifested in [12].

C. Smart Legal Contracts
As mentioned earlier, there exists a trend to regard smart

contracts as smart legal contracts. In fact, some strongly
advocate, primarily from a legal and accounting perspective,
the concept of ‘Ricardian contract’ as a basis of smart con-
tracts [13], [14], according to which smart contracts are not
just software programs for automatic transaction execution,
but instead they should refer to legal contract agreements in a
machine-readable format.

Toward this direction, [15] proposes a trace-based contract
model that incorporates ‘blame assignment’ and developed a
DSL based on the model. According to their formalism, each
contract takes a trace (a sequence of events) and determines
whether no contract breach is detected or a breach is caused
by some particular party. They show that this encompasses
various aspects of contracts including obligations, permissions,
and reparation.

More recently, ACCORD project has been launched [16],
which aims to establish standards for smart legal contracts.
The key concept proposed by the project is reusable domain-
specific legal contract templates, each of which is defined
as a triple of a data model for transactions, a document in
a natural language that includes variables instantiatable to
values defined in the data model, a set of code fragments
that implement blockchain transactions. Template engines like
Cicero [17] generate programs executable on HLF/EVM.

III. SMART CONTRACTS ON BLOCKCHAIN

In this section, we summarize how smart contracts work on
existing blockchain platforms such as Ethereum and Hyper-
ledger Fabric, and state which part we specifically address.

A. Generic Blockchain Applications

From a high-level perspective, blockchain platforms com-
monly provide functionalities to access transactional data
stored in ledger database(s) which are either globally shared
(Bitcoin/Ethereum/HLF) or distributed (Corda), invoke trans-
actions, and add blocks. From the application point of view,
these are regarded as API functions or virtual machine instruc-
tions.

B. Smart Contracts

Smart contracts are blockchain applications that are charac-
terized by strong programmability (Turing completeness) and
a high degree of autonomicity. In addition, it is often the case
that smart contracts are defined without directly employing
blockchain functionalites, which are instead encapsulated be-
yond an abstraction layer.

For example, smart contracts in Solidity look like C++
classes, each of which carries instance variables and method
functions. These are, when declared in the public scope,
mapped to state variables (stored in the ‘storage’ ledger) and
transactions, respectively. There is no direct way of extending
blocks within a Solidity program.

A smart contract in Hyplerledger Fabric, which is called
chaincode, is a software component with a particular interface
written in Go, Java or JavaScript. In the interface, the Invoke
function is defined as an entry point of transactions. It takes
an transaction name and an object that has functions to handle
a ledger and events.

IV. A DSL FOR DEFINING SMART CONTRACTS

In this section, we introduce a small LDLf -based domain-
specific language (DSL) to define contracts, in terms of which
we will discuss requirement enforcement and automatic con-
tract generation. Note that the DSL itself is defined primarily
for demonstrating the feasibility of our technologies and thus
intentionally designed minimalistic.

A. DSL Syntax

Primary building blocks of our DSL are contracts, each of
which is defined as a tuple of protocol, properties, and rules.
the first two of them constitute the high-level specification
layer of the contract whereas the third constitutes the rule
layer that includes implementation details. Its formal syntax
is defined in Table I. For examples, refer to the toggle switch
contract in Sec I and and the Safe Remote Purchase (SRP)
contract [1] listed in Figure 1(b).

a) Protocol: Each protocol defines a regular-pattern of
events to be processed by a contract using sequence (;), choice
(+), loop (∗), and test (?) operators. This is analogous to
regular expressions defined as regular-patterns of characters.

b) Properties: Each property is defined as a LDLf
formula. It specifies a temporal constraint that the contract
needs to satisfy. Properties can include atomic propositions
like q0 and q1 but cannot include event names. This is for
separating out the event-processing part of the semantics,
J·Kproto (Table III), from the other parts for simplicity. When

contract ::= protocol_decl property_decl rule_decl
protocol_decl ::= protocol protocol ; ;

protocol ::= event_name | protocol ; protocol
| protocol + protocol | protocol ∗ | protocol ?

property_decl ::= property (ldl_formula ;)+

rule_decl ::= rule (rule ;)+

rule ::= except? on event_name (, event_name)∗

(when condition ({ code })?)?

do action ({ code })?

condition ::= ldl_proposition | 〈ldl_path〉 condition
action ::= ensure ldl_proposition | raise event_name

| preserve (var_name (, var_name)∗)

| action (, action)+

TABLE I
DSL SYNTAX

more than one properties are defined in a contract, they are
meant to be connected conjunctively.

c) Rules: Each rule is defined in the ECA (event-
condition-action) style as a triad of an event, a condition for-
mula, and a sequence of actions. It specifies how the contract
reacts to a particular event. The condition part of a rule is
defined as a LDLf formula. Note a temporal condition, when
〈ρ〉ψ, examines, upon event arrival, whether the preceding
event trace matches ρ and ψ holds in the current state. The
action part is defined as a sequence of two sorts of unit actions,
namely (a1) ensure ψ action that ensures a proposition ψ
turns out to hold when the event processing is complete, and
(a2) raise e action that raises e subsequently after processing
the event that fires the rule. Meanwhile, for convenience,
we allow several shorthand expressions: (1) on e1, e2 . . .
is a shorthand for on e1 . . . followed by on e2 (2)
except on e1, e2 means “on any event except e1 and e2”. (3)
do preserve(q, . . .) means “none of q, . . . changes its value”
and is equivalent with when q do ensure q in conjunction
with when ¬q do ensure ¬q.

d) Code: The condition and action parts of a rule can
carry extra code for defining implementation details that do
not directly appear in the non-code parts of the rule. Concep-
tually, each code part and its corresponding non-code part are
respectively considered as a refinement and an abtraction of
the other. For concreteness of discussion, we adopt JavaScript
for code definition, although technically our discussion is not
restricted to any particular language.

B. Linear Dynamic Logic

Linear Dynamic Logic on finite traces (LDLf) [4] is an
extension of Linear Temporal Logic on finite traces (LTL):
the primary advantage of LDLf over LTL is that LDLf allows
to include regular paths in formulas for specifying modality.
For instance, �ψ (safety: a proposition ψ always holds, or
¬ψ never happens) and ♦ψ (liveness: ψ will eventually hold)

in LTL are equivalently represented in LDLf as [true∗]ψ
(≡ ¬〈true∗〉 ¬ψ) and 〈true∗〉ψ. Further, LDLf also allows us
to define formulas like 〈(_on; _off)∗〉 last which has no LTL
equivalent but specifies that two (exclusive) states, _on and
_off, alternate with each other through the end of computation,
where last (≡ [true] false) is a formula that holds only at
the end of a trace. Let A = {A, . . . } denote a set of
atomic propositions. Then, the formal syntax of LDLf and
its (trace-based) semantics are defined as shown in Table II,
where π, i |= φ should be interpreted as: given a finite trace
π = (π(0), . . . , π(last)), φ holds at the i-th position of π.

The expressiveness of LDLf is strictly higher than LTL
and its class as a language is exactly the same as the class
of the regular language. As a consequence, instead of intro-
ducing regular modeling languages, separately from formula-
definition languages, such as Promela for the SPIN LTL model
checker [18], LDLf can be directly used for defining models
(contracts in our case). This lies as the underlying foundation
of our DSL.

Temporal formula ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ
Propositional formula ψ ::= temporal formula w/o modality

Regular path ρ ::= ψ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

π, i |= A iff A ∈ π(i) ⊂ A
π, i |= ¬ϕ iff π, i 6|= ϕ
π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2

π, i |= 〈ψ〉ϕ iff i < last and π(i) |= ψ and π, i+ 1 |= ϕ

π, i |= 〈ϕ1?〉ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2

π, i |= 〈ρ1 + ρ2〉ϕ iff π, i |= 〈ρ1〉ϕ or π, i |= 〈ρ2〉ϕ
π, i |= 〈ρ1; ρ2〉ϕ iff π, i |= 〈ρ1〉 〈ρ2〉ϕ
π, i |= 〈ρ∗〉ϕ iff π, i |= ϕ, or

i < last and π, i |= 〈ρ〉 〈ρ∗〉ϕ
(ρ is not of the form ψ?)

TABLE II
LDLf SYNTAX AND SEMANTICS [4]

C. DSL Semantics

Each contract is defined by a protocol p, a set of properties
Φ = {φ1, φ2, . . . }, and a set of rules R = {r1, r2, . . . }. For
a contract c = (p,Φ, R), we define its semantics JcK by its
shallow-embedding into LDLf as follows.

JcK = JpKproto ∧
∧
φ∈Φ

φ ∧
∧
r∈R

JrKrule

1) Protocol p to JpKproto: Each event-processing operation
is mapped to a single-step transition between π(i) and π(i+1)
for some i, that is, processing of an event is an atomic
operation in our semantics. In this regard, we define the
following LDLf formulas for representing how events are
being processed at the current position of a trace:
• idle is a proposition indicating no event has been pro-

cessed at the current position of a trace.
• done(e) indicates that an event e has just been processed

through the transition between the preceding position and

1 contract Purchase {
2 uint public value;
3 address public seller;
4 address public buyer;
5 enum State { Created, Locked, Inactive }
6 State public state;
7

8 function Purchase() public payable {
9 seller = msg.sender;

10 value = msg.value / 2;
11 require((2 ∗ value) == msg.value);
12 }
13

14 modifier condition(bool _condition) { require(_condition); _; }
15 modifier onlyBuyer() { require(msg.sender == buyer); _; }
16 modifier onlySeller() { require(msg.sender == seller); _; }
17 modifier inState(State _state) { require(state == _state); _; }
18

19 event PurchaseConfirmed();
20 event ItemReceived();
21

22 function confirmPurchase()
23 public
24 inState(State.Created) condition(msg.value == (2 ∗ value))
25 payable
26 {
27 emit PurchaseConfirmed();
28 buyer = msg.sender; state = State.Locked;
29 }
30

31 function confirmReceived()
32 public onlyBuyer inState(State.Locked)
33 {
34 emit ItemReceived();
35 state = State.Inactive; buyer.transfer(value);
36 seller.transfer(this.balance);
37 }
38 }

1 protocol
2 purchase; confirmPurchase; purchaseConfirmed;
3 confirmReceived; itemReceived ;;
4

5 property
6 !_q0; // for seller. _q0 indicates its state is ’created’
7 [true∗] (!_q0 −> !_q1 & !_q2);
8

9 rule
10 on purchase // seller
11 when !_q0 { _event.data.value % 2 = 0 }
12 do ensure _q0 // created
13 {
14 pay (_event);
15 _data.seller = _event.data.sender;
16 _data.value = _event.data.value / 2;
17 };
18

19 on confirmPurchase // buyer
20 when !_q1 & !_q2
21 { _event.data.value == (2 ∗ _data.value) }
22 do raise purchaseConfirmed, ensure _q1 & !_q2 // locked
23 {
24 pay (_event);
25 _data.buyer = _event.data.sender;
26 };
27

28 on confirmReceived // buyer
29 when _q1 & !_q2 // locked
30 { _event.data.sender == _data.buyer }
31 do raise itemReceived, ensure !_q1 & _q2 // inactive
32 {
33 transfer (_data.buyer, _data.value);
34 transfer (_data.seller, _data.balance);
35 };
36

37 except on purchase do preserve (_q0);
38 except on confirmPurchase, confirmReceived do preserve (_q1, _q2);

(a) SRP in Solidity [1] (b) SRP in our DSL
Fig. 1. Safe Remote Purchase (without the “abort” feature)

the current position. It turns out idle is equivalent with
¬done(e) for any e.

Employing these formulas, we can straightforwardly map each
protocol p to a corresponding LDLf path JpKproto as:

JpKproto = 〈idle; proto2ldl(p)〉 (last ∧ idle)

where the auxiliary proto2ldl function is defined as shown
in Table III.

2) Properties Φ to
∧
i φi: Φ = {φ1, φ2, . . . } is straightfor-

wardly mapped to a conjunction of the formulas in Φ.
3) Rules R to

∧
iJriKrule: Each rule is defined as a safety

property (of the form [true∗]φ) as shown in the lower part
of Table III, where act(a) maps an action a to a LDLf formula
as follows:
• act(raise e) = 〈true〉 done(e)
• act(ensure ψ) = ψ

For example, on toggle when _off do ensure _on is translated
to

[true∗] (〈_off〉 done(toggle)
→ 〈_off〉 (done(toggle) ∧ _on))

D. Formal Verification of Contracts
We can now verify smart contracts in a formal and static

manner by means of converting them to LDLf formulas

JpKproto = 〈idle; proto2ldl(p)〉 (last ∧ idle)
where proto2ldl(p) : protocol→ LDLf path is defined as:

proto2ldl(e) = done(e)

proto2ldl(p; p′) = proto2ldl(p); proto2ldl(p′)

proto2ldl(p+ p′) = proto2ldl(p) + proto2ldl(p′)
proto2ldl(p∗) = (proto2ldl(p)) ∗
proto2ldl(p?) = (proto2ldl(p))?

Jon e when ψ do a1, a2, . . .Krule

= [true∗]
(
〈ψ〉 done(e)→ 〈ψ〉

(
done(e) ∧

(∧
i act(ai)

)))
Jon e when 〈ρ〉ψ do a1, a2, . . .Krule

= [true∗]
(
〈ρ;ψ〉 done(e)→ 〈ρ;ψ〉

(
done(e) ∧

(∧
i act(ai)

)))
TABLE III

J·KPROTO : protocol→ LDLf formula AND J·KRULE : rule→ LDLf formula

using J·K and running a decision procedure for solving LDLf
satisfiability. For examples, given a contract c, we can verify
whether 1) c accepts input events in a particular protocol p,
2) c has a particular property φ, and 3) c is a ‘refinement’

rules contract LDLf

requirement

select //

enforce

��

compose

VV
J·K //

Fig. 2. Contract construction and translation to LDLf

(or ‘specialization’) of another contract c′. Formal verification
of these are equivalently reduced to the following LDLf
verification.

1) Acceptance of a protocol p by c: JpKproto |= JcK
2) Model checking of a property φ over c: JcK |= φ
3) Contract refinement from c to c′: Jc′K |= JcK

V. FORMAL REQUIREMENT ENFORCEMENT

We discuss how requirements can be formally enforced
on contracts and how the mechanism can be exploited for
automatic contract generation.

A. Contract and Requirement

As discussed in the previous section, each contract is de-
fined as a tuple of protocol, formulas, and rules. By separating
out the first two of them, we here define the following domains
for contracts.

contract = specification× rules

specification = protocol× properties

requirement = specification

rule = event× condition× action

Note that for each of protocol, property, and rule, we can
naturally define its default value, namely any∗, true, and
on any when true do ensure true, which work as identity
elements for conjunction

To create a contract from a collection of rules, we first select
particular rules, using some predicate, and fill in the default
protocol and property values to promote it to a contract.

select : (rule→ bool)→ rules→ contract

By passing a filter predicate f , select(f,R) yields
(any∗, {true}, {r ∈ R | f(r)}). For instance, f(e, c, a) =
true(if e = e1)/false(o.w.) is a filter for selecting the rules
for the e1 event.

B. Requirement Enforcement: enforce

Given a requirement (p1,Φ1) and a contract c =
(p2,Φ2, R2), we define enforcement of the requirement on c
as another contract that is a variant of c with (p1,Φ1) enforced
upon. Formally, enforce is typed as

enforce : requirement→ contract→ contract

and enforce((p1,Φ1), (p2,Φ2, R2)) returns (p1 ∩ p2,Φ1 ∪
Φ2, R2). Notice that p1∩p2 is the intersection of protocols p1

and p2, while Φ1∪Φ2 and R1∪R2 denote conjunctive unions
of formulas and rules, respectively. As a direct consequence
of the definition, we can guarantee the following equation to
hold:

Jenforce((p1,Φ1), c)K = Jp1Kproro ∧
∧
φ∈Φ1

φ ∧ JcK

Notice that, as a natural consequence, this implies that
the requirement (p1,Φ1) is indeed enforced on c′ =
enforce((p1,Φ1), c) in the sense of Jc′K |= Jp1Kproro∧

∧
φ∈Φ1

φ.

C. Contract Composition

We now provide a systematic means to compose contracts.
In so doing, let us assume that each contract (p,Φ, R) is of
the form (p, {〈ρ〉 last}, R) (i.e., Φ = {〈ρ〉 last}). Note that,
as discussed in [4], each LDLf formula can be equivalently
represented as 〈ρ〉 last for some ρ. Considering this and the
fact that Φ = {φ1, φ2, . . . } actually denotes

∧
i φi, we can

safely assume this without sacrificing generality.
a) Sequence c1; c2: Given c1 = (p1, {〈ρ1〉 last}, R1) and

c2 = (p2, {〈ρ2〉 last}, R2), c1; c2 is composed by sequentially
combining c1 and c2:

c1; c2 = (p1; p2, {〈ρ1θ1; ρ2θ2〉 last}, R′1 ∪R′2)
where

θi = {(ψ ∧ gi)/ψ | ψ is a proposition in ρi}
R′i = {(e, c ∧ gi, a) | (e, c, a) ∈ Ri}

Note that θi denotes a substitution: ρiθi yields a regular path
obtained by substituting each proposition ψ that appears in ρi
with ψ∧gi. Note also that g1 and g2 are guard formulas added
to the path/rule parts of c1; c2 for distinguishing whether each
of them originates from c1 or c2. For instance, by introducing
fresh new atomic propositions A1 and A2, g1 and g2 can be
defined as A1 ∧ ¬A2 and ¬A1 ∧A2, respectively.

b) Choice c1 + c2: Given c1 and c2 in the same way,
c1 + c2 is composed by disjunctively connecting c1 and c2:

c1 + c2 = (p1 + p2, {〈ρ1θ1 + ρ2θ2〉 last}, R′1 ∪R′2)

c) Loop c∗: Given c = (p, {〈ρ〉 last}, R), c∗ is composed
by making a loop for repeating c for 0 or more times:

c∗ = (p∗, {〈ρ∗〉 last}, R)

Naturally, composition operators can be applied to both
full-fledged contracts and contract specifications without rules
(i.e. R = ∅). Let us consider a contract specification and
a full contract as a pair when they correspond with each
other through the abstraction-refinement relation. Then, it turns
out that the set of such pairs are closed under composition
operations, that is, (s1, c1) and (s2, c2) are 2 pairs in the set
then (s1; s2, c1; c2), (s1 + s2, c1 + c2), and (s1∗, c1∗) also
belong to the set. This closure property is a key for composing
valid contracts without looking into details of full-fledged
contracts.

D. Examples

1) Toggle Switch: A part of the toggle switch contract in
Sec I is composed of the 2 building-block contracts, which
we here call con and coff, as (con; coff)∗. Its only difference
from the version shown in Sec I, which is obtained as a
result of automatic contract generation, is that no property
definition is included. The switch-alternation property is added
to (con; coff)∗ by applying enforce to the switch specification.

2) SRP Seller and Buyer: The contract listed in Figure 1(b)
includes the following 2 sub-contracts:
• Seller cS : which receives a single ‘purchase’ event,

carries an atomic proposition denoted by _q0 that is set
to false initially, and rules for ‘purchase’ (L9-16 and L36
of Figure 1(b)).

• Buyer cB : which receives the subsequent events after
‘purchase’, carries _q1, _q2, and all the remaining rules.

Then, cS ; cB defines a contract that is almost equivalent with
Figure 1(b). The differences are the temporal property at L6
that is missing in cS ; cB and auxiliary propositions such as A1

and A2 that appear in cS ; cB but have no effect in this case.
3) SRP Abort: The original version of Figure 1(a) provides

an extra “abort” feature that is defined as follows.

event Aborted();
function abort() public onlySeller inState(State.Created)
{

emit Aborted();
state = State.Inactive;
seller.transfer(this.balance);

}

To incorporate this into our version of the contract, we
additionaly define the following Abort contract, denoted by
cabort:

protocol abort; Aborted ;;
property !_q3; // _q3 indicates ’inactive’
rule

on abort when !_q3
{ _event.data.sender == _data.seller }
do raise Aborted, ensure _q3 // inactive
{ transfer(_data.seller, _data.balance); };
except on abort do preserve (_q3);

Then, cS ; (cB + cabort) indeed incorporates the feature.

E. Automatic Contract Generation

Based on the compositional contract construction we have
just established, we can semi-automatically generate con-
tract(s) that meet a particular requirement, in which the non-
automatic part is instantiation of guard formulas that appear
as free variables in the composition operations in Sec V-C.

Specifically, given a set of contracts C0 and a requirement
(p,Φ), we employ the following 2-step procedure to combine
contracts in C0 and generate another set of contracts C2 each
of which meets the requirement.

1) Construct, by combining contracts in C0, a set of ‘can-
didate’ contracts C1, each element of which carries a

protocol p′ that is equal with (or larger than) p. Note
this involves a recursive operation described below.

c = (p′,Φ′, R′) ∈ C1

⇔
{
c is composed of c1, c2, . . . for some ci ∈ C0

JpKproto |= Jp′Kproto

2) Enforce the requirement on the contracts in C1 and filter
out those that derive unsatisfiable LDLf formula.

C2 = {c′ | c ∈ C1, c
′ = enforce((p,Φ), c), ∃π, 0 |= Jc′K}

The key step is the construction of C1, which is described
in detail as follows: We first construct a set of sets of protocols
P by recursively decomposing p in the following manner:

1) Initially, P is set to {{p}}
2) For each element P = {p1, p2, . . . } of P , if pi for some

i is either of the form ‘q1; q2’, ‘q1 +q2’, or ‘q∗’, we add
to P a new set of protocols P ′ obtained by replacing pi
in P with ‘q1, q2’, ‘q1, q2’, or ‘q’, respectively.

3) Terminate when there remains no room for P to expand.
Intuitively, each element P of P denotes a set of protocols
from which we can compose p by using the 3 composition
operators. Then, select those elements of P that are included
in the protocols of C0 ({P ∈ P | P ⊂ {p | (p,Φ, R) ∈ C0}}).
Notice that each of those elements naturally indicates how
to combine contracts in C0, that is, if p and p′ in P derive
from p; p′ at the second step of the above recursive procedure,
this indicates the corresponding contracts c and c′ should be
combined as c; c′. Taking this into account, we finally construct
C1 by combining contracts in C0 exactly in the indicated
manner.

For the toggle switch case, C0 is initially set to {con, coff},
from which C1 = {(con; con)∗, (con; coff)∗, . . . , (coff; coff)∗}
is constructed. Then, by enforcing the requirement (p,Φ)
and filtering out those derive unsatisfiable models, C2 =
{enforce((p,Φ), (con; coff)∗)} is obtained as the result, where
p and Φ denote the protocol and the properties of the speci-
fication of the target contract. In the same way, the contract
in Figure 1(b) can be generated by calling our algorithm with
C0 = {cS , cB} and a specification that corresponds with L1-6
of Figure 1(b).

VI. IMPLEMENTATION AND EVALUATION

We have developed a set of tools1 for running contracts in
our DSL on HLF. First, a contract definition in the DSL is
translated to a semantically-equivalent UML statechart in the
standardized SCXML format [19]. Then, it is serialized into
JSON and interpreted by our SCXML engine that runs within
a chaincode process on HLF. In this section, we briefly sketch
our tool implementation, illustrate how they work, and show
some results of evaluation.

A. Statechart Generation

1) Contract to DFA: A contract is first translated into a
LDLf formula, using J·K defined in Sec IV-C. It is succeed-

1publicly available from https://github.com/ldltools

Contract
J·K // LDLf

// DFA // Statechart

event names, code fragments

OO

Fig. 3. Contract to statechart

ingly translated to a deterministic finite automaton (DFA) that
exactly accepts the traces for which the formula holds.

2) DFA to Statechart in SCXML: The generated DFA
is then further translated into UML Statechart by directly
mapping its states and transitions to those for a (single flat)
statechart. Meanwhile, the event names and code fragments
that appear in the contract definition are kept separately and
restored in the statechart generation. Notice that event names
are all translated to propositions by J·K and thus DFA does not
retain the event names, whereas code fragments included in
rules are all discarded by J·K. Our tool for statechart generation
tries to find, for each state transition, which rule in the source
contract corresponds with it. Specifically, this is done by
running a LDLf model checker for eatch transition (q, e, q′)
and examining if there exists a rule (e, c, a) such that c and a
hold at q and q′, respectively. Once corresponding rule(s) are
detected, the event names and the code fragments in the rules
are attached to the transition. For example, Figure 4 shows
statecharts for the Safe Remote Purchase example (with or
without ‘abort’) generated by our tool.

Fig. 4. Statecharts for SRP without or with the ‘abort’ feature

Fig. 5. Design of our SCXML engine

B. SCXML Engine for Hyperledger Fabric

Our SCXML engine supports many important elements
of SCXML including parallel and hierarchal states, event
transmission, data model and JavaScript execution. It is written
in Go language and designed to be used inside a chaincode,
a smart contract of Hyperledger Fabric, as shown in Figure
5 where peer is the node of Hyperledger Fabric. Transac-
tions to the chaincode are mapped to events of SCXML
and recorded to a ledger. Since the chaincode cannot have
persistent data, the states and the values of the data are
managed by the SCXML engine and automatically stored
into a KVS (Key-Value Store) which represents the current
state of the blockchain system. This update on the KVS is
recorded to the ledger. JavaScript programs are executed as ac-
tions or conditions using the Otto package (https://github.com/
robertkrimen/otto) which is a JavaScript interpreter written in
Go language. We can handle the data of the statechart using the
JavaScript programs. In addition, our custom builtin JavaScript
functions enable accessing the KVS and sending custom
events through the chaincode APIs (PutState, GetState
and SetEvent) provided by Hyperledger Fabric where the
custom events are user-defined events to be sent to a client
program from a chaincode.

Fig. 6. Sequence diagram for processing events

Function Time (sec) Rate (%)
A Invoke Execution 0.43 42.16
B SCXML Serialization 0.05 4.90
C SCXML Deserialization 0.01 0.98
D JS Execution (conditions/actions) 0.29 28.43
E JS Initialization, etc 0.09 8.82

Each rate represents the ratio against the total elapsed time of the transaction
execution. A includes B + C + D. D includes E.

TABLE IV
CPU PROFILING DATA FOR THE SCXML ENGINE

The sequence diagram of Figure 6 depicts interactions
among Client, Peer, Chaincode, Otto and the SCXML engine.
Interactions for the confirmPurchase event is as follows:

1) Client requests Peer to process a transaction to
send the event confirmPurchase with JSON data
{"value":10,"sender":"buyer"} to the state-
chart.

2) Peer calls the Invoke function of Chaincode, which
receives the event name and the JSON data, to handle
the transaction.

3) Chaincode sends the event with the JSON data to the
SCXML engine.

4) After the SCXML engine receives the event, it retrieves
the current state of the statechart and data stored in the
KVS through chaincode APIs where, for example, the
value associated with the key “value” in the KVS is
assigned to the JavaScript variable _data.value.

5) The SCXML engine evaluates guard conditions to deter-
mine a transaction to fire where the value of “value” and
“buyer” of the event data are assigned to the JavaScript
variables _event.value and _event.buyer, re-
spectively.

6) The SCXML engine executes an action. During this
execution, the SCXML engine set the custom event
purchaseConfirmed to be sent to Client through
a chaincode API.

7) Update the current state.
8) The updated current state and the data are stored into

the KVS.
9) Peer records the transaction to Ledger if it succeeds.

10) The custom event is sent to Client.

C. Evaluation

We investigated the performance of our SCXML engine by
deploying the chaincode of the SRP example to Hyperledger
Fabric running in the “dev” mode and collecting runtime
profiling data using pprof . The “dev” mode is an execution
mode of Hyperledger Fabric used during a development phase
where we can execute the chaincode manually in a terminal
window. In this experiment, Client first initialized the SCXML
instance and sent the confirmPurchase event and the
confirmReceived event while retrieving the current state
and the data after each transaction. We iterated this scenario
20 times and collected cumulative times spent by the Invoke
function and its callee functions. We found two types of
performance overhead that could not occur in commonly used

chaincodes: (1) serialization and deserialization of states and
data of SCXML for storing them in KVS and (2) preparation
for the JavaScript execution, the greater part of which is
consumed by the initialization of JavaScript interpreter and
the data serialization for the communication between Go and
JavaScript.

Table IV summarizes times and rates of these two types
of performance overhead where times of the other functions
are eliminated for simplicity. We think that the performance
overhead can be reduced by developing a more efficient
representation of states and data of SCXML and by writing
actions and conditions in Go instead of JavaScript.

VII. CONCLUSION

We have proposed a new LDLf -based approach to smart
contract development: each smart contract is defined as a
tuple of a regular pattern of events (protocol), a set of LDLf
formulas (properties), and a set of ECA rules to react to
events. Separately, arbitrary requirements to enforce on the
contract are defined as pairs of protocol and properties. Both
the contract and its requirements are translated into LDLf
formulas, so by taking their conjuction we obtain a contract on
which the requirements are naturally enforced. In addition, we
have also proposed compositional construction of contracts as
well as automatic generation of contracts that meet particular
requirements. We have introduced a DSL for demonstrating
the effectiveness of the approach and developed a set of tools
to run contracts in the DSL on Hyperledger Fabric. Evaluation
shows its feasibility and high effectiveness.

For future research directions, we are considering several
extensions of what we have achieved in this paper. Firstly, we
plan to take into account multiple contracts interacting with
each other. In reality, smart contracts are often combined to-
gether for M2M-like highly automated composite operations in
which inter/intra-contract operations are both involved. Most
likely, this will lead to bringing the distinction between these
operations into our formal contract model. Secondly, we also
plan to formally ensure the refinement/abstraction relations
between the code and the non-code parts of a rule. Currently,
code parts can be defined separately from their corresponding
formal non-code parts and thus can have a semantics that is
different from what the non-code parts indicate. To exclude
such discrepancy systematically, we are considering a prover-
based approach to semi-automatically verifying their relations.
Thirdly, from a practicality point of view, extending our DSL
to supporting contract composition and automatic generation,
as discussed in Sec V-C and Sec V-E, is another option.
Finally, for higher efficiency, instead of deriving a statechart
from each contract definition, which is a specialization of a
rule-set to the contract, we could have different contracts run
on a single common (RETE-based) rule engine.

REFERENCES

[1] Ethereum, “Solidity,” https://solidity.readthedocs.io/, 2017.
[2] R3, “Corda,” https://docs.corda.net/api/kotlin/corda/, 2017.
[3] Bitcoin, “Script,” https://en.bitcoin.it/w/index.php?title=Script, 2016.

[4] G. Giacomo and M. Vardi, “Linear temporal logic and linear dynamic
logic on finite traces,” in Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence. AAAI Press, Aug. 2013, pp.
854–860.

[5] I. Swaps and D. Association, “Smart contracts and
distributed ledger – a legal perspective,” Whitepaper,
Aug. 2017. [Online]. Available: https://www.isda.org/a/6EKDE/
smart-contracts-and-distributed-ledger-a-legal-perspective.pdf

[6] Linux Foundation, “Hyperledger overview,” https://www.hyperledger.
org/wp-content/uploads/2018/04/Hyperledger-Overview_April-2018.
pdf, Apr. 2018.

[7] R. O’Connor, “Simplicity: A new language for blockchains,” https://
blockstream.com/simplicity.pdf, 2017.

[8] Clause, “Ergo language manual,” https://ergo.readthedocs.io, 2017.
[9] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,

G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, “Formal verification of smart
contracts,” in PLAS. ACM Press, Oct. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2993600.2993611

[10] P. Bahr, J. Berthold, and M. Elsman, “Certified symbolic management
of financial multi-party contracts,” in International Conference on Func-
tional Programming. ACM Press, Oct. 2015.

[11] S. P. Jones, J.-M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering,” in International Conference on
Functional Programming. ACM Press, Sep. 2000.

[12] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, Sep. 1997.

[13] I. Grigg, “The Ricardian contract,” in Proceedings of the First IEEE
International Workshop on Electronic Contracting. IEEE Press, 2004,
pp. 25–31.

[14] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates:
foundations, design landscape and research directions,” Aug. 2016.

[15] T. Hvitved, “Contract formalization and modular implementation of
domain-specific language,” Ph.D. dissertation, Faculty of Science, Uni-
versity of Copenhagen, Mar. 2012.

[16] D. Selman, “Accord project: Template specification version 0.6,” https:
//www.accordproject.org, 2017.

[17] Clause, “Accord cicero documentation,” https://accordcicero.
readthedocs.io, 2017.

[18] G. Holzmann, The SPIN MODEL CHECKER: Primer and Reference
Manual. Addison-Wesley, Sep. 2003.

[19] W3C, “State chart xml (scxml): State machine notation for control
abstraction,” Tech. Rep., Sep. 2015. [Online]. Available: https:
//www.w3.org/TR/scxml/

