LDLf formula φ ::=φ1∣φ1`->'φ φ1 ::=φ2∣φ1`|'φ2 φ2 ::=φ3∣φ2`&'φ3 φ3 ::=`last'∣α∣`!'φ3∣`<'ρ`>'φ3∣`['ρ`]'φ3∣`('φ`)' Regular path ρ ::=ρ1∣ρ`+'ρ1 ρ1 ::=ρ2∣ρ1`;'ρ2 ρ2 ::=ρ3∣`{'φ`}'`?'∣ρ3`*' ρ3 ::=`{'ψ`}'∣`!'ρ3∣`('ρ`)' Proposition ψ ::=ψ1∣ψ1`->'ψ ψ1 ::=ψ2∣ψ1`|'ψ2 ψ2 ::=ψ3∣ψ2`&'ψ3 ψ3 ::=α∣`!'ψ3∣`('ψ`)' Atomic proposition α ::=`true'∣`false'∣symbol